C-2 Dual-channel coagulometer

Operator's Manual

Operation Manual for Helena C-2 Software: C11.15

For In-Vitro Diagnostic use

Instrumentation and reagents for human coagulation and haemostasis Copyright © 2008, Helena Biosciences Europe, U.K. Revision 9 Issue Feb-2009 Document No: HL-2-1820P 2009/03(2)

Warning	This manual is valid for firmware C11.15 . The manual may differ slightly from the actual product as a result of product improvements. Please read the Operation Manual in its entirety prior to operation. In order to ensure a high level of performance, all safety information must be followed.
Copyright	Copyright © 2008 by Helena Biosciences Europe Neither the Operator's Manual nor any part thereof may be copied, digitally processed or otherwise transferred without written permission from Helena Biosciences
Trademarks	Helena C-2 is a trademark of Helena Biosciences Europe. Other product names used in this Operator's Manual are trademarks of the respective companies.
Software	The software for Helena Biosciences Europe products is the intellectual property of Helena Biosciences Europe, which company retains all rights to the usage of the software. The purchaser of a <i>Helena C-2</i> acquires rights for use of this software.
Warranty	Helena Biosciences Europe guarantees that the instrument will be delivered in a fault free condition. Any damages resulting from accidents, improper use, using non-recommended material or negligence of maintenance are excluded from warranty. Warranty will expire if unauthorized persons perform any service on the instrument.
Service	Repairs to the instrument may only be carried out by trained personnel, and replacement parts must comply with instrument specifications. Please contact the local distributor of Helena Biosciences if service is required.

Authorized for Distribution and Service :

Helena Biosciences Europe Queensway South Team Valley Trading Estate Gateshead, Tyne & Wear NE11 OSD Great Britain Tel: + 44(0) 191 482 8440 Fax: + 44(0) 191 482 8442

General enquiries: <u>info@helena-biosciences.com</u>

Internet:

http://www.helena-biosciences.com

Sub-Distributor:

Sub-Distributor's stamp / address / label

Firmware History Helena C-2

- 1.09 First Release
- 1.10 6 dialogue languages introduced
 - Autosensitivity for clotting method
 - New Fib algorithm
 - Result Flag R & S introduced
 - OD & coag correction introduced
- 1.11 Chromogenic method introduced (requires UV-LED optic upgrade) - New tests D-Dimer , Ecarin ECAH & ECAT
- 1.12 Minor changes and fixes
- 1.13 Tecam Smart interface implemented (LIS connection)
 - Improved optic check for high lipemic, bilirubin or other disturbance
 - Autostart sensitivity can be adjusted for every test individually
 - General improvements of measurements
 - D-Dimer can be adjusted with time & od correction for any reagent
- 1.14c Profile can be set free
 - Bugfix Tecam Interface & Print-Out
 - Quick test change with keys up/down key
 - Results (s,%,INR,..) are scrolled
 - Result Flag 'B' (Biphasic aPTT) introduced
 - Result Flag 'F' (low fibrinogen) introduced
 - new test LA (DRVVT) with automatic ratio calculation
 - new test APCR with automatic ratio calculation
 - statistic counter for PT,aPTT,FIB,AT,DD and all introduced
 - bugfix for high bilirubin samples
 - Autostart sensitivity can be set now within SETUP TEST menu
- 1.15 D-Dimer adapted to Helena Auto Blue D-dimer 400 reagent 2008 - Bugfix DD: For zero D-Dimer curves the former system could reboot sometimes

TABLE OF CONTENTS

1.0 S	AFETY INFORMATION	7	
2.0 0	ENERAL		
2.1.	Intended purpose	9	
2.2.	Installation		
2.3.	Technical data		
2.4.	CE marking	11	
3.0 I	NSTRUMENT COMPONENTS	12	
3.1.	Incubator Block	12	
3.2.	Control panel	13	
3.3.	Rear of equipment	14	
3.4.	Autopipette (optional)		
3.5.	Thermal-Printer (optional)		
3.6.	Barcode Scanner (optional)	14	
4.0 T	HEORY OF OPERATION	15	
4.1.	Clotting Assay (CLOT)	16	
4.2.			
4.3.	Chromogenic Assay (KINETIC)		
4.4.	Chromogenic Ecarin Assay (100mOD)		
4.5.	Immunoturbidimetric Assay (IMMUNO)		
5.0 C	PERATING INSTRUCTIONS		
5.1 . 5.1	Setup System .1. Language		
5.1		19 19	
5.1	.3. Temperature Control	20	
5.1	4. Signal	20	
5.1		20	
5.1			
5.1		20	
5.1	.8. Patient Identification	21	
5.2.	Setup Test	23	
5.2			
5.2			
5.2			
5.2		25	
5.2			
5.2	.6. Print Test		
5.2	.7. Autostart		
5.3.	Test Analysis		
5.3		 	
5.3			
5.3	· · · · · · · · · · · · · · · · · · ·		
5.3			
	5 ,		

5.3 5.3 5.3 5.3 5.3	.6. Manual break of measurement	30 30 30 30 30
5.3	.10. Result Warning Messages	31
6.0 S	ERVICE MENU	33
6.1.	System Analysis	33
6.2.	Optic-Values	34
6.3.	Print Sys-ID	34
7.0 T	ROUBLESHOOTING	36
8.0 N	IAINTENANCE	39
8.1.	Recommended Maintenance	39
8.2.	Temperature Adjustment	39
8.3.	Cleaning procedures	39
9.0 A	PPLICATIONS	40
9.1.	Test Overview	
9.2.	Prothrombin Time	41
9.3.	Derived Fibrinogen	
9.4.	Clauss Fibrinogen Assay	
9.5.	Thrombin Time Assay	
9.6.	APTT	46
9.7.	PT-Based Factor Assays (II, V, VII & X)	47
9.8.	APTT-Based Factor Assays (VIII, IX, XI & XII)	48
10.0 S	PECIAL FUNCTIONS	49
10.1.	Software Upgrading	49
11.0 T	ECAM SMART THE LIMS SOLUTION	50
11.1.	General	50
11.2.	Interface Protocol	51
11.3.	Screenshots	54
	RODUCT CATALOGUE	

TABLE OF FIGURES

Figure 1- Incubator Block	12
Figure 2 - Control Panel	13
Figure 3 - Rear of Equipment	14
Figure 4 - The Detection Principle	15
Figure 5 - The Turbidity Method	16
Figure 6 - The Chromogenic method	17
Figure 7 - Latex agglutination	18
Figure 8 - Relationship of light absorbance and concentration of D-dimer	18
Figure 9 - Flow diagram for the "Setup" System" Submenu	22
Figure 10 - Flow Diagram for the "Setup Test" Submenu	26
Figure 11 - Flow Diagram of "ANALYSIS" Submenu	32
Figure 12 - Flow Diagram of "SERVICE" Submenu	35
Figure 13 – LIMS communication	51
Figure 14 – Tecam Smart Results	54
Figure 15 – Tecam Smart Statistics	54
Figure 16 – Tecam Smart DataBase followed by a report	55

Symbols

Symbol	Meaning	Explanation
⇔	Advice	Indicates important information and tips.
	Warning!	Risk of possible health damage or considerable damage to equipment if warning is not heeded.
	Biohazard!	Equipment can be potentially infectious due to the samples and reagents used.
	Danger!	Potential risk to operating personnel or equipment due to electric shock.

1.0 Safety information

Recommend materials

Use only original disposables. Use only manufacturer approved material.

Avoid contact Never touch moving parts.

Do quality control

Carry out control measurement runs at regular intervals to ensure that the Analyzer continues to function faultlessly.

Waste cuvettes

The cuvettes are intended as single-use items only.

Infectious Material

Avoid direct contact with samples and sample residues in the used cuvettes.

Infectious material such as cuvette waste and liquid waste must be disposed of in compliance with local regulations governing infectious materials.

Wear medical infection grade protective gloves for all cleaning and maintenance work involving potential contact with infectious liquids and use each pair of gloves once only.

Use a hand disinfectant product, e.g. Sterilium[®], to disinfect your hands after completion of the work.

Enviromental condition

Ambient temperature must be 18 – 25°C Humidity must be below 80% Avoid any vibrations or impacts to analyzer Do not use analyser if explosive or inflammable gas is around.

Electrical Safety

Make sure the operating voltage setting is correct before connecting the device to the mains power. Use only shockproof (grounded) electrical sockets. Use only shockproof extension leads in perfect condition. Defective leads must be replaced without delay. Never intentionally interrupt protective ground contacts. Never remove housing elements, protective covers or secured structural elements, as doing so could expose parts carrying electric current. Make sure surfaces such as the floor and workbench are not moist

Make sure surfaces such as the floor and workbench are not mois while work is being done on the device.

2.0 General

The *Helena C-2* is a manual 2 channel photo-optical instrument that offers clotting & chromogenic & immunoturbidimetric testing capabilities. The *Helena C-2* can be used for a wide variety of coagulation and fibrinolysis tests such as:

 Prothrombin Time (PT) Activated Prothrombin Time (aPTT) Thrombin Time (TT) Venom Time (VT) Fibrinogen (FIB) Factors (FII - FXII) 	 Protein-C (PC) Protein-S (PS) D-Dimer (DD) von Willebrand Factor (VWF) Ecarin Chromogenic Assay Thrombin (ECAT)
 Antithrombin (AT3) Heparin (HEP) Activated PC resistance (APCR) Lupus Anticoagulant (Screen,	 Ecarin Chromogenic Assay Hirudin
Confirm)	(ECAH) Plasminogen (PLG) a2-Antiplasmin (A2AP)

FEATURES:

- Coagulation analyser for clotting, chromogenic and immunoturbidimetric assays.
- Highly reliable, long life-span and nearly service free system.
- Autosense optics to eliminate interferences such as Bilirubin and Haemoglobin.
- Approved clotting algorithm for all kind of samples and reagents. If there is a clot it will be detected.
- Biphasic aPTT waveform curve detection to indicate DIC.
- Low fibrinogen curve detection.
- Fibrinogen concentration can be derived from a PT result. The standard CLAUSS method is also available.
- Calculation in Activity %, INR, Ratio, g/L or mg/dL.
- Calibration curves are programmable with up to 5 calibration points.
- Correlation analysis of calibration curve.
- 2 Stop-watch functions which can be used independently.
- Multi-language software (German, English, Spanish, French, Italian, Portuguese)
- Patient identification (No PID, manual input, autoseries, barcode).
- Duplicate Testing Mode.
- Free Profile testing (PT, APTT, FIB).
- APC-R with automatic ratio calculation.
- DRVVT with automatic ratio calculation.
- Micro volume testing (75µL).
- Reagent stir position with magnetic stir bars.
- Routines for selftest (trouble-shooting).
- Routines for print outs (result, calibration, service, system).
- Optional autopipette for electronic triggered start.
- Automatic Start triggered by adding reagent.
- Optional data management and research software.
- Optional printer.
- Optional barcode scanner for patient identification.
- Easy software update.
- Interface for Laboratory Information & Management Systems (LIMS).
- CE marked.
- Small dimension and weight fits on every desktop.

2.1. Intended purpose

The *Helena C-2* is designed to carry out coagulometric tests such as PT, aPTT, TT, fibrinogen, single factor tests, chromogenic and immunoturbidimetric tests (e.g. Antithrombin-III, D-dimer etc.).

Use only citrated plasma for test analysis runs: Mix 9 parts venous blood with 1 part 3.2% (0.105M) sodium citrate and centrifuge the mixture at 1500g for approx. 10 minutes. Plasma must be used within 4h.

Do not use plasma with more than 25mg/dL Bilirubin concentration Do not use plasma with more than 1000mg/L Haemoglobin concentration

The *Helena C-2* must be operated by a specialist trained in clinical laboratory techniques who has also received instruction and training in operation of the *Helena C-2* and has read and understood this Operator's Manual.

2.2. Installation

No special precautions are necessary when starting up the *Helena C-2*. However, the following is recommended:

- Place on a level surface in an area free from excessive temperature fluctuations.
- Avoid vibration during measurement.
- Protect the instrument from direct sunlight, moisture and dust.
- Check that the voltage and frequency data on the identification plate on the instrument agree with the local power rating before starting the instrument for the first time.

The instrument is connected to the power supply by the mains cable supplied. If obvious damage has occurred during shipping, *do not use*. Contact your local distributor for replacement or repair.

2.3. Technical data

Instrument: Boards Microprocessor Flash-EPROM RAM EEPROM AD-Converter Optics RS 232	SMD (Small Mounted Devices) based NEC V25 128 KByte 128 KByte 2 KByte 18 Bit (16 bit used) 2 LED's ultra bright, pulse modulation control 9600 Bauds, 8 Data, 1 Stop, no parity
<u>Power Supply:</u> External Input voltages Output voltages Approvals	42W max. 96 Vac to 243 Vac / 50 to 60 Hz +5Vdc/3A; +15Vdc/2A; -15Vdc/0,5A TÜV, CSA, UL, CE, IEC950, IEC380

Keyboard:

3x8 matrix, foil keyboard, with Test, Function and numerical keys

Display:

4 lines x 20 characters Liquid Crystal Display

Incubation block:

6x2 double-cuvette prewarming positions, 2 measuring and 3 reagent positions

Autopipette (optional):

25 / 50 / 100 / 200 μL volume with electronic triggered start

Dimensions:

Depth: 230mm Width: 200mm Height: 115mm

2.4. Declaration of Conformity

EC Declaration of Conformity Déclaration de conformité CE EG-Konformitätserklärung Helena Biosciences Queensway South Team Valley Trading Estate Gateshead , Tyne & Wear, NE11 OSD United Kingdom Tel. +44(0)191 482 8440 / Fax +44(0)191 482 8442

herewith declares that: / déclare ci-après que: / erklärt hiermit dass:

Instrument type / Type d'appareil / Gerätemodell

	Helena C-2
F	REF
	C-2

- is in conformity with the provisions of the Directive 98/79/EC on in vitro diagnostic medical devices, and the Directive 80/181/EEC
- est conforme aux dispositions de la Directive 98/79/CE relative aux dispositifs médicaux de diagnostic in vitro, et de la Directive 80/181CEE
- konform ist mit den Bestimmungen der Richtlinie 98/79/EG über In-vitro-Diagnostika und der Richtlinie 80/181/EWG

and furthermore declares that: / et déclare par ailleurs que: / und erklärt ausserdem dass:

- the standards EN 60601-1, EN 60601-1-2, DIN EN ISO 14971:3/2001, DIN EN 1041:4/98 have been applied.
- les normes EN 60601-1, EN 60601-1-2, DIN EN ISO 14971:3/2001, DIN EN 1041:4/98 ont été appliquées.
- die Normen EN 60601-1, EN 60601-1-2, DIN EN ISO 14971:3/2001, DIN EN 1041:4/98 angewendet wurden.

This certificate is valid for all instrument produced of this type. Ce certificat est valable pour tous les appareils produits de ce type. Dieses Zertifikat ist für alle produzierten Geräte dieses Modells gültig.

3.0 Instrument Components

3.1. Incubator Block

The incubator block is made from aluminum, which ensures equal distribution of heat. The temperature of the incubator block is regulated to 36.5° C - 37.5° C

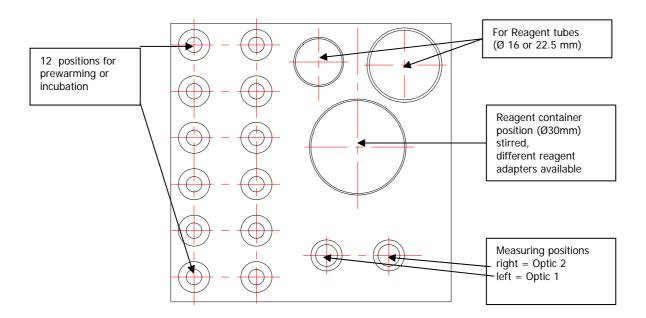
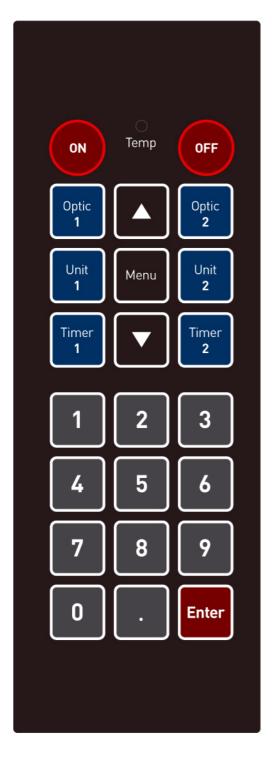
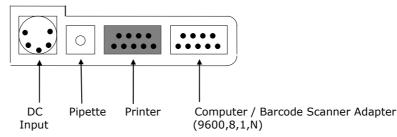



Figure 1- Incubator Block


3.2. Control panel

ON / OFF	Switches the unit on and off
Temp.	Indicates Temperature is in the permitted range of 37°C +/- 0.2°C
Optic 1 / 2	Activates channel 1 and/or 2
Unit 1 / 2	Converts result into alternative data options
Timer 1 / 2	Activates Timer function 1 and/or 2
Cursor up	Line up / Scroll down / select setup parameters
Menu	Go back to Main Menu or next entry
Cursor down	Line down / Scroll down / select setup parameters
Numeric keys	s For input of calibration values and Patient Identification or Selection of Submenu and Selection of Test No.
Enter	Confirm entry, jump to next entry

Figure 2 - Control Panel

3.3. Rear of equipment

Figure 3 - Rear of Equipment

- DC Input: For connector to Power Supply
- Pipette: For connector to Autopipette (Cat. No. C-010)
- Printer: For connector to Thermal Printer (Cat. No. C-01)
- Computer: For connector to PC (Firmware upgrading, TECMONI, LIMS) or connector to barcode scanner

3.4. Autopipette (optional)

Optional accessory tool for automatic test start. The pipette supports four different volumes (25, 50, 100 and 200 $\mu L)$

3.5. Thermal-Printer (optional)

Optional accessory tool for automatic print-out. When the thermal printer is connected with printer-port of the *Helena C-2*, the following data will be printed automatically:

- Result Print-Out
- Test Parameter Print-Out
- Service-Report Print-Out
- System-Identification Print-Out

3.6. Barcode Scanner (optional)

Optional accessory tool for easy handling of patient identification. Up to 20 characters can be read.

Barcodes with more information will cut off at the maximum length. The barcode-scanner must support a serial interface, set to 9600 Baud, 8 Data, 1 Stop, No parity.

Warning: The barcode-scanner is powered with 5V over PIN 9 of the RS232 Interface of the analyser. Only use scanners with this feature.

4.0 THEORY OF OPERATION

The *Helena C-2* is a highly sensitive 2-channel-photometer. A very intensive LED-Optic ensures accurate and precise results, even when iteric or lipemic samples are used. The receiver signal is detected and converted to an electrical current. During the actual test the system is searching for the best signal amplification, therefore it will support a wide range of different reagents (i.e. very turbid thromboplastins or very clear reagents). Additionally the software is based on optical density (extinction), which absorbs outside light effects.

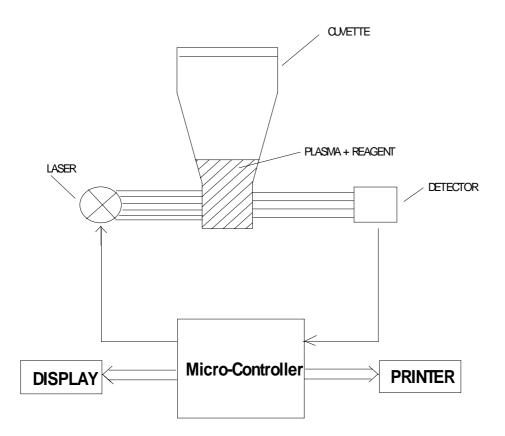


Figure 4 - The detection principle

4.1. Clotting Assay (CLOT)

The thrombin catalyzed conversion of fibrinogen to fibrin is the final reaction in the 'coagulation cascade'. Fibrin formation results in an increase in sample turbidity which is detected by the photometer. Photometric detection is started automatically on addition of reagent or manually by pressing the "Optic" key with simultaneous addition of the test reagent. Alternatively, the reaction is started by the addition of the test reagent using the Autopipette. The time between the start of the photometric detection, and the turning point of the reaction curve is the result. The result is displayed in seconds on the Liquid Crystal Display (and printed automatically to the optional Thermal Printer.)

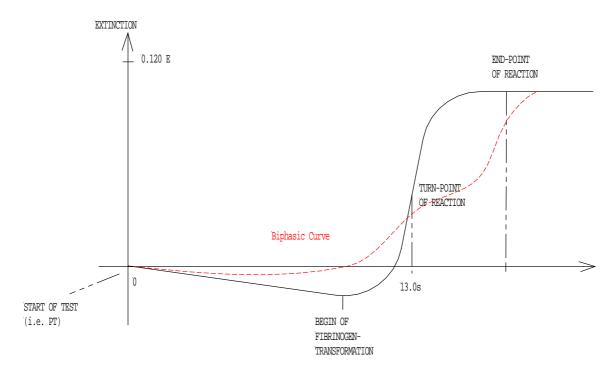


Figure 5 - The Turbidity Method

The diagram is representative of a typical PT curve with normal control plasma and a curve with biphasic reaction. Biphasic aPTT reactions are highly indicative of disseminated intravascular coagulation (DIC)

4.2. Derived Fibrinogen (CLOT + FIB)

The derived fibrinogen is determined using the clotting method described in section above. The fibrinogen concentration in the sample is proportional to the change in optical density in the cuvette, which accompanies the conversion of fibrinogen to fibrin at the end of the reaction. The result is expressed as "E", which represents the optical densitiy at the end-point.

4.3. Chromogenic Assay (KINETIC)

In this method, the end result is determined from the rate of optical density change. Test plasma is pre-incubated with an enzyme (i.e. – Factor Xa for determination of AT-III) and residual enzymatic activity is detected by the addition of a chromogenic substrate. The concentration of the analyte in the test plasma is directly or indirectly proportional (depending on the reagent system) to the rate of substrate hydrolysis, and is reported as the mean slope of optical density per minute (delta OD(E)/min).

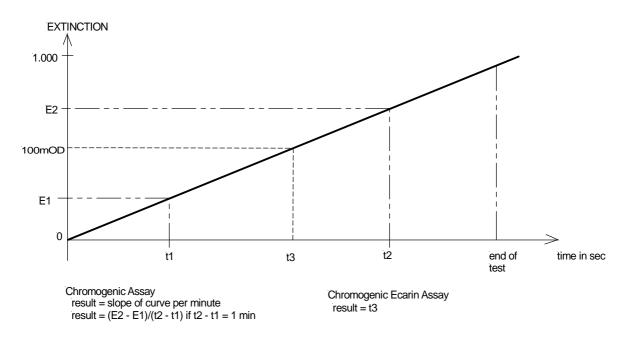


Figure 6 - The chromogenic method

4.4. Chromogenic Ecarin Assay (100mOD)

The measurement principle is similar to regular chromogenic assays. But the result is the time between start of test and when signal breaks through 100mOD.

4.5. Immunoturbidimetric Assay (IMMUNO)

Intensive light is able to penetrate turbid solutions, such as latex suspensions used for the determination of D-dimer concentration. Latex particles, designed specifically for automated D dimer testing, are coated with a monoclonal antibody specific for D-dimer. If D-dimer antigen is present in the sample, an antigen-antibody reaction occurs, with a simultaneous change in light transmission. The concentration of D-dimer in the sample is directly proportional to the rate of the antigen-antibody reaction. The result is reported as the mean slope of optical density per minute (Δ OD (E)/min, E = Extinction, a unit of light-absorbance). The following diagram illustrates the measurement principle.

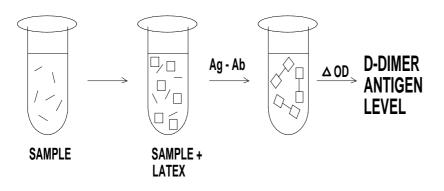


Figure 7 - Latex agglutination

The D-dimer concentration is proportional to the rate of change in optical density. The instrument calculates the average slope of reaction, using the linear portion of the curve only.

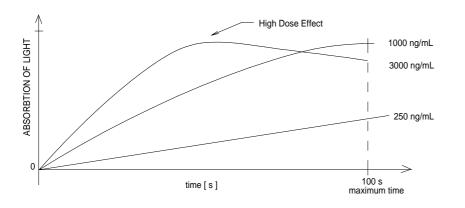


Figure 8 - Relationship of light absorbance and concentration of D-dimer

The kinetic algorithm for D-dimer testing is illustrated with three typical reaction curves. At high doses the linear relationship between signal and concentration is not valid. This is called "High Dose Hook Effect".

5.0 **Operating Instructions**

This section provides general instructions necessary for the user to achieve maximal use and benefit from the *Helena C-2*. Please refer to section 9.0 for specific test applications.

The On/Off switch is located on the keyboard panel of the instrument. *For optimal results, do not operate until the temperature indicator light is on*. It takes approximately 10-15 minutes for the instrument to equilibrate to 37°C. The general sequence of operation for test analysis is:

1.) Enter the "SETUP SYSTEM" submenu to confirm/change system settings

2.) Enter "SETUP TEST" to select test parameters and enter calibration data if desired; and 3.) Enter the "ANALYSIS" submenu for sample testing.

5.) Enter the ANALISIS subment for sample testing.

From the **Main Menu**, the following options are available:

1.	ANALYSIS	
2.	SETUP TEST	
3.	SETUP SYSTEM	
4.	SERVICE	

At each screen, selections are made using the Up/Down cursors. To proceed to the next menu item, press either the "Menu" or "Enter" key. If a mistake is made, press the "Menu" key until the main menu appears and start over.

To return the system to default values, Press simultaneously "Optic 1"+ "." + "Enter" keys.

5.1. Setup System

To enter this submenu, press #3 from the main menu. The default values for the system parameters are:

LANGUAGE:	ENGLISH
FIBRINOGEN:	mg/dL
TEMP.CONTROL:	ON
SIGNAL:	ON; VALUE 325
AUTOSTART	ON
CONTRAST OF LCD:	VALUE: 25
SPEED OF MIXER:	VALUE: 200
PAT.IDENT.:	NO PAT.ID.

5.1.1. Language

English, German, French, Italian, Spanish, Portuguese Use the cursor keys to select language required, press "Enter" or "Menu" to advance.

5.1.2. Fibrinogen Concentration Units

Use the cursor keys to select mg/dL or g/L, press "Enter" or "Menu" to advance.

5.1.3. Temperature Control

On/Off - use the cursor keys to select desired option, press "Enter" or "Menu" to advance. For temperature adjustment, refer to section **8.2 Temperature Adjustment**

5.1.4. Signal

ON/OFF (A beep at the start and end of testing) - use the cursor keys to select desired option, press "Enter" or "Menu" to advance.

Higher/lower - use the cursor keys to change volume and "Enter" to advance.

5.1.5. Autostart

Use cursor keys to change and continue with "ENTER"

- ON Measurement starts automatically with addition of reagent. No need for use of the Autopipette or additional pressing of the relevant Optic channel key.
- Off Regular mode for start with optional available Autopipette or manual start by pressing relevant Optic channel key

Activate optic channel just before addition of reagent. Movements of the cuvette can pre-start measurement – Do not touch cuvette, if optic channel is active!

The sensitivity of the autostart can be set individually for each test within the menu "SETUP TEST".

5.1.6. Contrast of the LCD (Liquid Crystal Display)

Higher/lower - use the cursor keys to change and "Enter" to advance.

5.1.7. Speed of the Mixer

Higher/lower - use the cursor keys to change and "Enter" to advance.

5.1.8. Patient Identification

Four choices are available:

- No Patient ID
- Extra Input
- Autoseries
- Barcode

Use the cursor keys to select the desired mode, press "Enter" or "Menu" to advance. If *No Patient ID* is selected, results will be printed out without a patient identification number. If *Extra Input* is chosen, the user enters a patient identification number when running each test (in the Analysis mode). The third option, *Autoseries*, allows the user to enter a starting patient identification number. Each sample run (in the Analysis mode) is then automatically incremented by one from the starting patient identification number entered by the user. If *Barcode* is active, an alphanumeric Pat.Id. is entered by a barcode-scanner. No manual input or correction is possible. The maximum length of the Pat.Id. in that mode is 20 characters. Limited by the space on the LCD, only the first 10 characters will be displayed.

<u>SETUP SYSTEM</u>

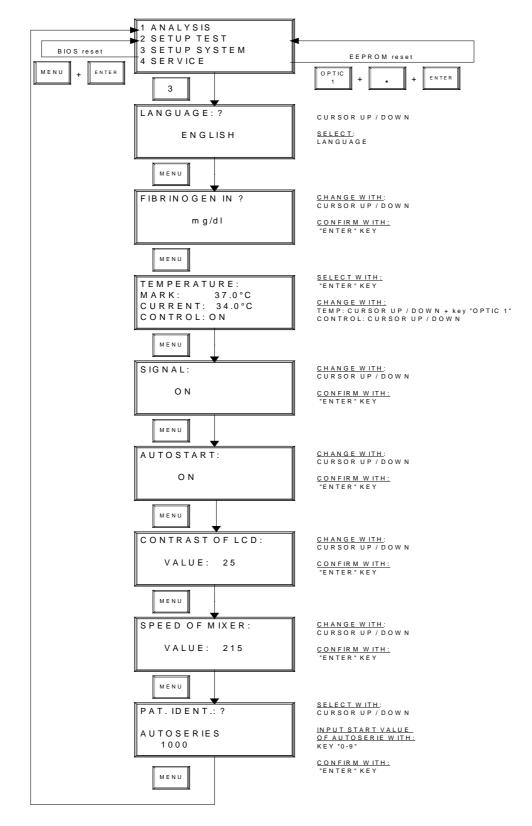


Figure 9 - Flow diagram for the "Setup" System" Submenu

5.2. Setup Test

The specific parameters for each test are entered in this menu. Once the initial data is entered and saved it is not necessary to go into this menu for routine testing. The submenu of "SETUP TEST" is illustrated in Figure 10. To enter this submenu, press #2 from the main menu. The default values for "SETUP TEST" are:

METHOD:	CLOT (FIB=Clauss; DD+vWF=IMMUN;
	PLG+a2AP=Kinetic)
UNITS:	seconds or dE/Min
CALIBRATION CURVE:	Reset to zero
AUTOSTART:	500 (FIB=250; DD=1000)

5.2.1. Setup Test

To select a test enter the numeric code of the designated test. Alternatively, the Up/Down arrow keys can be used to scroll through the entire test menu. For example, key in #1 to select PT. Press "Enter" to confirm selection. The "METHOD" can also be changed when the area on the screen is blinking.

TEST:	PT
METHOD:	CLOT
AUTOSTART:	500

Depending on which test is active, the following methods can be selected:

- CLOT Clotting assays
- CLOT+FIB Fibrinogen will be derived from PT
- CLAUSS Fibrinogen according to CLAUSS
- KINETIC Chromogenic Assay
- 100mOD Chromogenic Ecarin Assays
- IMMUNO Immunoturbidimetric Assays

5.2.2. Units

Every result is displayed in seconds [s]. However, the user can also choose to display PT results in % (% activity), R (ratio) and I (INR). Calibration data, the mean normal PT value, and/or the ISI of the thromboplastin reagent must be entered to obtain results in %, R and I. Refer to the next section for information on calibration data entry. Use the Up/Down cursor keys to select the desired units, "Enter" to confirm and "Menu" to advance.

UNITS: PT (s-%-R-I): s-%-I- -NORMALVALUE: 12.2s ISI-VALUE: 1,05

The *Helena C-2* reports results using the following units (which are test dependent):

E = Extinction (optical density)	precision X.XXX
s = seconds	precision XXX.X
R = ratio	precision XX.XX
I = INR	precision XX.XX
% = percent activity	precision XXX.XX
U = mg/L (except FIB: mg/dL or g/L)	precision XXX.X

5.2.3. Standard Curve

To obtain results in units of concentration (mg/dL, IU/mL...) or % activity, a calibration curve is needed. A minimum of **two** points is required, with a maximum of five available. Calibration data is obtained by testing plasma [in duplicate (2) or quadruplicate (4)] in the "Analysis" mode. An example of calibration data entry is shown below.

<u>Example</u>: A PT calibration curve with derived fibrinogen. Two different calibration curves are required. The order of entry is not critical, the instrument will automatically sort calibration points.

3-point Calibration Curve for PT

4-point Calibration Curve for Derived Fib.

100% = 12.2s	591 mg/dL = 0.413E
50% = 18.0s	377 mg/dL = 0.246E
25% = 27.2s	267 mg/dL = 0.140 E
0% = 0.0s	95 mg/dL = 0.042E
0% = 0.0s	0 mg/dL = 0.0 E

A correct calibration curve is required to obtain results in units of concentration or % activity. Those points remaining with no data entry are not used in the calibration curve calculation. For those tests that require a zero calibration point a value greater than zero must be entered (i.e. 0,1 % and 0.1s). All calibration points can be reset to zero by simultaneously pressing the "0" and "Enter" keys. A full parameter reset will eliminate calibration data for all assays. **5.2.4.** Correlation Factor (linearity index for calibration data)

Insert correct calibration data and confirm storing and printing. All test-parameters and in addition a correlation factor will be printed. The correlation factor (R^2) indicates the linearity of the calibration curve.

It is 1.000 if the points are exactly on one line.

If R^2 is less than 0.980, a calibration curve with more than 3 calibration points is recommended.

5.2.5. Store Data

Yes/No. Use the cursor key to select.

5.2.6. Print Test

Yes/No. Use the cursor key to select.

5.2.7. Autostart

The sensitivity of the autostart feature can be adjusted for every test individually. The value represents the required optical change before the instrument triggers the measurement start.

Range of sensitivity:

- Very sensitive: 300 500
- Normal: 500 1000
- Insensitive >1000
- The default value is 800.
- Increase value if test does start before adding the reagent
- Decrease value if test does not start at all.
- Set to 0 will disable the autostart for the test

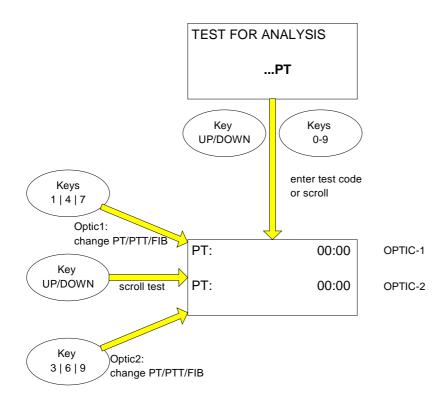
Some tips:

- Pipeting clear reagent in clear suspension will produce only low optical change and require a sensitive setup. (example: FIB or chromogenic tests).
- Try to pipette directly into the suspension instead of onto or down the cuvette walls.
- Try to pipette with high force.

Do not use autostart below 300

 \Rightarrow

In this scenario, the optic could be triggered by touching the instrument.


Figure 10 - Flow Diagram for the "Setup Test" Submenu

5.3. Test Analysis

To enter the submenu "Analysis", press #1 from the main menu.

5.3.1. Test Selection

The first screen in the "Analysis" submenu will ask the user to make a test selection. This can be done in two ways: by scrolling through the test menu with the cursor Up/Down keys; or by entering a numeric test code (i.e. - "01" for PT test). The test selection is confirmed with the "Enter" key.

Once a test is chosen, the system will prompt the user to remove any remaining cuvettes. Once "Enter" is pressed, the instrument performs a self-check. If any warnings or errors are identified, a message will appear. The user is given the option to ignore the error message or warnings by pressing the "Enter" key. *However, all results will be printed with an error code and the results may be invalid*. It is recommended that if an error occurs, the test should be interrupted. Return to the Main Menu and enter the "Service" menu. Please refer to section 6.0 for more specific instructions and information on error codes and warnings.

Within the analysis menu the actual test can be switched if no measurement is ongoing. Change test optic-1 with Key "1" (PT), Key "4" (PTT), Key "7" (FIB)

Change test optic-2 with Key "3" (PT), Key "6" (PTT), Key "9" (FIB) Change test optic-1+2 with Key "UP", Key "DOWN"

5.3.2. Optic Activation & Entering Patient Identification Numbers

The optic can be activated in three different ways.

Single activation:

- Press optic key
- Enter / Change PID
- Press optic key again → PID is confirmed and channel active Repeat procedure for each desired optic channel

Multi activation with single PID

- Press key "." (dot)
- All channels will be activated All patient ID numbers will be set logically if autoseries is active (PID = 100,101,102,103)

Multi activation with double PID

- Press key "0"
- All channels will be activated in duplicate mode.

If "Autoseries" was chosen in "Setup System", "press the "Optic 1" key.

FIB: <u>100</u>	00:00
FIB:	00:00

The patient identification number for channel one will be the number that was manually entered by the user. If this is not the correct patient identification number, the Up/Down scroll keys can be used to increase or decrease this number. Press the "Optic 1" key to confirm and activate the channel. Press the "Optic 2" key to continue. The patient identification number will be automatically incremented by one for each subsequent channel.

FIB:	<u>ACTIVE</u>	00:00
FIB:	<u>101</u>	00:00

If "Extra Input" was chosen in "Setup System", the patient identification number shown for the channel will be the last entered PID. Confirm or enter a new patient ID using the numeric keyboard. Press the "Optic" key to confirm patient identification number and activate the channel. Repeat for the remaining channels.

To enter the patient ID. with a *Barcode* scanner, press the "Optic 1" key ("Barcode" is displayed), scan the barcode (the first 10 characters of the patient ID. are displayed). Continue with the next barcode.

If **"No Pat Id**" was selected in **"Setup Test**", **"No PID**" will be seen for each channel. Press Optic 1 to confirm and activate channel. Repeat for remaining channels.

5.3.3. Duplicate testing

If duplicate testing is desired, enter the same patient identification twice. The mean result will automatically be printed along with the individual channel data.

If the duplicates differ more than 7.5% from the mean value, the mean result will be flagged with X'!

If autoseries is selected a press on key ``0'' during optic activation, will activate all channels in duplicate mode

5.3.4. Starting the Analysis

Place the required number of cuvettes in the cuvette pre-warming positions. To continue with the PT example, pipette 25μ L of sample to each cuvette well. Press the "Timer 1" button to start the stopwatch. Place the Thromboplastin reagent with magnetic stir bar in the center large reagent pre-warming position.

Transfer the first cuvette with sample to the measurement position. Once patient identification numbers have been entered, press the Optic keys again to activate the channels.

FIB: ACTIVE	01:30
FIB: <u>ACTIVE</u>	00:26

When the timer has reached 1 minute, pipette 50μ L of mixed Thromboplastin and calcium reagent into the first cuvette position. If autostart is enabled, the optic will start automatically. A beeping noise will indicate the start of the reaction. Repeat for the remaining cuvettes. The reaction can also be started either by pressing the optic key or by using the Autopipette, which electronically triggers the optic channel.

In summary, press the optic key once for patient identification data entry, press again to activate the channel, and a third time if manually initiating the reaction. (Do not press a third time if using the Autopipette to start the reaction or if autostart is active).

If using the Autopipette,

- always pipette from left to right (channel 1 2)
- Disable the autostart function in the SETUP SYSTEM

5.3.5. Display during measuring

Once started, a short beeping noise is followed by a blinking screen "-----". After the test deadtime the actual optical density will be displayed. Avoid contact with the cuvette while this message is shown. A beeping noise will sound when the reaction is complete and the result will be displayed on the screen. If the thermal printer is attached, results will automatically be printed.

PT:	29 mOD	01:48	
PT:	185 mOD	01:09	

channels are in measurement

PT: S 31 mOD 01:52 PT: R 188 mOD 01:13

a result is found on channel 2, but the instrument waits until channel 1 is completed. Channel 1 is running in high sensitivity

The flag S'' indicates, that the analyser has switched to high sensitivity. The flag R'' indicates, that a result is found.

The instrument will display the results. If the instrument finds a result on optic channel x, it will not display it as long as lower numbered channels are still in progress. In this case the actual optical density is flagged with "R" (result found).

5.3.6. Manual break of measurement

To cancel the measurement, press both the **"Enter"** and **"Optic"** keys. This will stop the reaction. All optic channels must be inactive in order to return to the main menu.

5.3.7. Return to main menu

Press key "MENU". All optic channels must be inactive in order to return to the main menu. Stop any measurements (refer section above). If an optic channel is active, start and break the measurement.

5.3.8. Unit Key Functions

Once the measurement is complete, results can be converted to units other than s, E, E/min, if this option has been selected in **"Test Setup"**. For each optic channel, press the corresponding Unit key to convert.

5.3.9. Stopwatch Functions

To start each stopwatch, press the Timer keys 1-4. To stop and reset, press the Timer key again.

5.3.10. Result Warning Messages

In addition to the result the instrument may inform the operator of critical samples by attaching status characters or error messages

 DISPLAY	PRINTER	MEANING .
*	*	Out of calibration (i.e. *167 %)
> <	>	Out of scale (i.e. >999.9 mg/dL)
++++	NO CLOT DETECTED	No clot detected within 300 seconds
	NO CLOT DETECTED	Clot detected before deadtime
????	COAGULATION ERROR	Detected reaction was not valid for coagulation
OPTIC	LOW SIGNAL	Light transmission was not sufficient.
"S″		High sensitivity mode
"R″		Result found
``В″		Biphasic APTT found (indicative of DIC)
"F″		Low fibrinogen found (indicative of liver
		disease)

Read section on troubleshooting for further details.

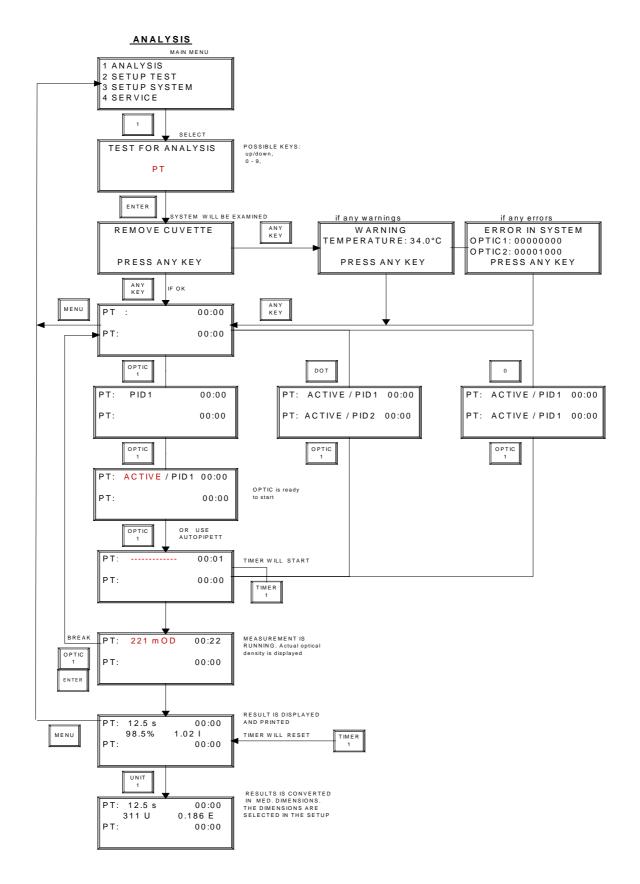


Figure 11 - Flow Diagram of "ANALYSIS" Submenu

6.0 Service Menu

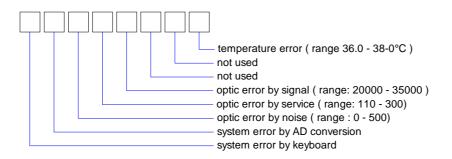
1	SYSTEM ANALYSIS
2	OPTIC VALUES
3	PRINT SYS-ID

6.1. System Analysis

Press #1 from the Service submenu to enter. Perform a "SYSTEM ANALYSIS" to check instrument operational status. In "SYSTEM ANALYSIS", the *Helena C-2* checks the optic, temperature, memory values and Analog to Digital Conversion. The error level for each channel is determined and displayed if a system error or warning is identified.

An example of a "SYSTEM ANALYSIS" screen is shown below:

ERROR IN SYSTEM OPTIC 1: 00001000 OPTIC 2: 00000000 PRESS ANY KEY


The number after CH1-2 is the error code: Refering to section 5.2. The LED light of channel is not working correctly, while channel 2 is without troubles.

After the self-check is complete, a service report is automatically printed.

SERVICE REPORT		
HELENA	C-2	
SN: 1000 SOFTWARE: TEMP.FACTOF CONTRAST: 2 MIXER: 200 TEMPERATUR	R: 15496 25	Serial number Software revision Digital target temperature value LCD contract value Speed of reagent mixer Current temperature at reagent position
OPTIC SIGNAL:	1 2. 32753 32679 (20000-35000)	Current optic values Allowed range of values
NOISE:	153 166 (0-500)	Current noise values Allowed range of values
SERVICE:	184 202 (110-390)	Current service values Allowed range of values
SYSTEM-ANAL	YSIS	
OPTIC1 = 000 OPTIC2 = 000		Errorcode Errorcode
STATISTIC		Counters for differenct tests
PT: 1000 PTT:1000 TT: 1000 FIB: 1000 AT: 1000		1000 PTs performed on instrument

Error Level

When the self-check is followed by an error message, an 8 BIT long number in binary code can be seen. Each BIT is indicative of a specific error or warning:

Example: The Error Level "00000001" indicates that the temperature is out of range.

Refer to the troubleshooting guide for information on corrective actions.

6.2. Optic-Values

From the **"SERVICE**" submenu, remove cuvettes and press #2 to enter **"OPTIC VALUES**". The values of signal, noise and service is displayed for each channel.

An example of an "OPTIC VALUES" screen is:

	CH1: 32432	(202)
	152 CH2: 32169	(213)
	168	
Recommended values: *		
SIGNAL :	20000 -	- 35000
NOISE:	0 - 500	
SERVICE:	110 - 3	90

6.3. Print Sys-ID

press #3 from the Service menu.

		SYSTEM IDENTIFICATION HELENA C-2	
MAINBOARD: SYSTEM: BIOS: FLASH: SOFTWARE:	1000 1.00 2.00	MAINBOARD REVISION MAINBOARD INDEX MAINBOARD SER.NO.: BIOS REVISION: BIOS INDEX: FLASH REVISION: FLASH INDEX: SOFTWARE REVISION: SOFTWARE INDEX:	955 0 1000 1 0 2 0 11 15

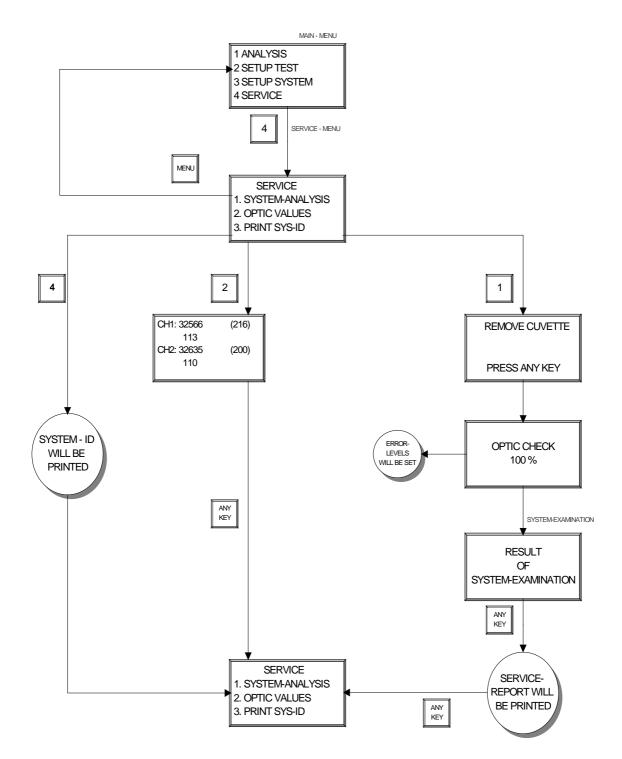


Figure 12 - Flow Diagram of "SERVICE" Submenu

7.0 Troubleshooting

TEMPERATURE ERROR	
DESCRIPTION	Temperature is not between 36.0 – 38°C
PROBABLE CAUSE	 Temperature draft environment (window) Electronic error Temperature is not adjusted correctly.
CORRECTIVE ACTION	 Temperature is not adjusted correctly Place instrument in a draft free environment without direct sun lighting Allow instrument to heat up at least 15 min after temp. adjustment or boot-up Adjust temperature (refer sections 8.1 & 8.2) Contact technical services at local distributor if error persists.

OPTIC ERROR : SIGNAL	
DESCRIPTION	This error occurs if not enough light is flashing onto the receiver.
	The optical signal must be between 20000 - 35000
PROBABLE	1. Temp. out of range
CAUSE	2. Dirt in optics
	LED's on optic block defective
	4. Chip errors on boards
CORRECTIVE	 Wait until instrument reaches 37°C
ACTION	2. Clean optics (refer section 8.3)
	3. Replace optic block
	4. Contact technical services at local distributor if error persists

OPTIC ERROR : NOISE	
DESCRIPTION	Noise is produced by IC chips and external light sources (sun, lab-
	lighting)
	The digital value of the noise must be below 500.
PROBABLE	1. The instrument is lit by intensive external light sources, such
CAUSE	as sun or halogen beamer
	2. Electronic errors
CORRECTIVE	 Protect instrument against sun or UV – light
ACTION	2. Contact technical services at local distributor if error persists

OPTIC ERROR : SERVICE	
DESCRIPTION	This error occurs if the required signal amplification is not between
	110 - 300
PROBABLE	1. Temp. out of range
CAUSE	2. Dirt in optics
	LED's on optic block defective
	4. Chip errors on boards
CORRECTIVE	 Wait until instrument reaches 37°C
ACTION	2. Clean optics (refer section 8.3)
	3. Replace optic block
	4. Contact technical services at local distributor if error persists

OPTIC ERROR : AD-Conversion		
DESCRIPTION	The photo receiver converts light intensity to analog direct current. This current is converted to a digital signal. Every digital value has its own signature. If a value is missing, a system error occurs.	
PROBABLE CAUSE	1. CPU defect 2. ADC defect	
CORRECTIVE ACTION	Contact technical services at local distributor	

ANALYSIS ER	ANALYSIS ERROR : ++++	
DESCRIPTION	No clotting reaction is detected within 300s	
PROBABLE CAUSE	 There is really no clot. The fibrinogen concentration in the sample is below 50 mg/dL. Started channel and pipetted channel are not equal. 	
CORRECTIVE ACTION	 Confirm correct handling Determine clotting time with research software "TECMONI" or observe the optical values on the display during screen. The time until a change in signal can be observed is the clotting time Change to recommended reagent provider 	

ANALYSIS ERROR :	
DESCRIPTION	Clotting reaction starts and ends before deadtime
PROBABLE CAUSE	 PT based test clots before 7 sec PTT based tests clots before 15 sec
CORRECTIVE ACTION	Change to recommended reagent provider

ANALYSIS ERROR : ????	
DESCRIPTION	The instrument detected a reaction, but was not able to verify as a clot reaction.
PROBABLE CAUSE	 Air bubbles Touching of cuvette Clot reaction starts before deadtime
CORRECTIVE ACTION	 Avoid air bubbles – pipette against cuvette wall Avoid touching the cuvette during measurement start Change to recommended reagent provider

ANALYSIS ERROR : OPTIC	
DESCRIPTION	The received signal is below 400 digits
PROBABLE CAUSE	 Very turbid samples or reagents Dirt in optics Optic is defective
CORRECTIVE ACTION	 Clean optics Check optic value (refer section 6.2) Change to recommended reagent provider

ANALYSIS ERROR : >, <	
DESCRIPTION	Assay range limitation
PROBABLE CAUSE	 Calculated units are not within 0-999 Calculated activity is not within 3 – 180% Calculated ratio is not within 0-9 Calculated INR is or within 0-12
CORRECTIVE ACTION	Check test setup and recalibrate test if necessary

ANALYSIS ERROR : *	
DESCRIPTION	Calculated result is extrapolated. Extrapolated results can vary to intrapolated results.
PROBABLE CAUSE	The obtained result is outside of calibration
CORRECTIVE ACTION	Extend the calibration curve. High and low standards are helpful.

ANALYSIS ERROR : B	
DESCRIPTION	The aPTT is obtained from a biphasic reaction curve. The "B" is no error flag, but more an DIC indicator
PROBABLE CAUSE	Biphasic aPTT correlate with disseminated intravascular coagulation (DIC)
CORRECTIVE ACTION	Confirm DIC. FIB, CRP and VLDL concentration may also helpful.

ANALYSIS ERROR : F		
DESCRIPTION	The PT is obtained from a very flat reaction curve. The " F'' – Flag is no error flag, but more a low fibrinogen indicator.	
PROBABLE CAUSE	Fibrinogen concentration of sample is below 75mg/dL. Low fibrinogen levels can be caused by liver-disease or DIC.	
CORRECTIVE ACTION	Confirm low fibrinogen with a FIB determination according to CLAUSS method.	

8.0 MAINTENANCE

- **8.1.** Recommended Maintenance
- Daily: Check that the optic unit and the filters are free from dirt. Clean with lint-free tissue paper if necessary.
- Monthly: Check the temperature of the incubator block. When the green LED is on, place water in a reagent bottle and place in one of the reagent positions. Insert a thermometer and record temperature after 10 minutes. The temperature should be in the range of 36.5°C and 37.5°C. Proceed to next section if the temperature is incorrect.
- Yearly: Service check by authorized technical person. (total cleaning of instrument, function tests, quality-control routines)
 - **8.2.** Temperature Adjustment
 - 1. When the green LED is on, fill a reagent container (bottle) with water and place in a reagent position on the incubator block. Place a thermometer in the water.
 - 2. Allow to warm for 10 minutes.
 - 3. Enter the submenu "Setup System" and advance to the temperature screen. The current temperature of the *Helena C-2* is displayed.
 - 4. Compare the temperature displayed by the system and the thermometer. If the temperature is different, adjust the temperature on the *Helena C-2* by simultaneously pressing the Up/Down cursor keys *and* the "OPTIC 1" key. (To increase or decrease using larger increments, press additionally the numeric "1" key.)
 - 5. Wait until a stable temperature of 37.0°C is displayed on the *Helena C-2*. Check and correct the system temperature if not equivalent to the external thermometer.

6. If both the thermometer and instrument display the same temperature, press the "Enter"key and exit back to the main menu.

8.3. Cleaning procedures

The casing should be cleaned with a light alcohol solution or with a light soap solution, using a soft foam only. The optical filter should be cleaned with just light alcohol solution. Dry well with clean, fat-free wipes

Warning:

- Do not use aggressive cleaning solutions!
- Do not use hard foam material or metallic foams.

9.0 APPLICATIONS

9.1. Test Overview

A summary of the current test applications supported by the *Helena C-2*, the choice of medical dimensions and the numeric test codes are shown below:

Test	Method	Unit	#Code	
STAT			00	
PT +/- FIB	CLOT + FIB	s-%-R-I-E-	01	CLOSE ADV
		U		GLOSSARY
PTT	CLOT	s - R	02	Method
ТТ	CLOT	s - R	03	 CLOT, clotting assay
FIB(CLAUSS)		s - U	04	 KIN, chromogenic assay
VT	CLOT	s – R	05	 IMMUNO, immunoturbidimetric assay
PC	CLOT + KIN	s - % - U	06	 100mOD, chromogenic ecarin assay
PS	CLOT + KIN	s - % - U	07	
F2	CLOT + KIN	s - %	08	Unit
F5	CLOT + KIN	s - %	09	 E, result in optical density (Extinction); precision XXXX
F7	CLOT + KIN	s - %	10	 s, result in seconds; precision XXX.X
F8	CLOT + KIN	s - %	11	 %, result in activity; precision XXX.X
F9	CLOT + KIN	s - %	12	♦ U, result in mg/dl, mg/l,µg/ml, g/l;
F10	CLOT + KIN	s - %	13	precision XXX (except HEP: X.XXX)
F11	CLOT + KIN	s - %	14	 R, result in ratio; precision XX.XX
F12	CLOT + KIN	s - %	15	 I, result in INR; precision XX.XX
F15 (Fletcher)	CLOT + KIN	s - %	16	#Code
HEP	CLOT + KIN	s – U	17	 Direct code for test selection
AT3	CLOT + KIN	s - % - U	18	
APCR	CLOT	s - % - R	19	
LA-S	CLOT	s - % - R	26	
LA-C	CLOT	s - % - R	27	
DD	IMMUNO	E - U	20	
VWF	IMMUNO	E - U	21	
ECAH*	100mOD	E - % - U	22	
ECAT*	100mOD	E - % - U	23	
PLG*	KIN	E - % - U	24	
a2AP*	KIN	E - % - U	25	
L	1	ı		* ECAH and higher only for 400nm

version

All applications can be run with a minimum volume of 75 μ L. But in some cases it is recommend to use higher volume levels to keep high precision and accuracy. The next pages suggest test procedures, which are tested on the instrument and which guarantee a Coefficient Variation (CV) of below 5 % (depending on test, pipette). Please refer to Helena Biosciences official application notes for accurate and up-to-date test procedures including any new reagent and test procedures.

9.2. Prothrombin Time

REAGENT PREPARATION

Prepare Thromboplastin reagents according to the package insert.

SYSTEM PREPARATION

- 1. Turn on instrument and wait for green LED light to come on.
- 2. Turn on printer if connected.
- 3. Connect optional Autopipette to system.
- 4. Check setup system if necessary.
- Check setup test if necessary. Enter new calibration curve data to obtain results in % activity; enter ISI of thromboplastin reagent and in-house determined mean normal PT if INR results are desired. Enter in-house determined mean normal value if results in R are required.
- Return to main menu and enter "Analysis" by pressing #1. Select PT with the Up/Down arrow keys or enter the numeric test code, #01. If any warning or error message appears, refer to section 7.0.

TEST PROCEDURE

Clotting Method:

- 1. Pipette 25 µl plasma into cuvette(s).
- 2. Prewarm plasma for 60 secs, or the time indicated in the application guide. Press the "TIMER 1" key to start stop-watch 1.
- 3. Place Thromboplastin and calcium (1:1) reagent with stir bar in large central reagent position.
- 4. Transfer cuvette to measuring position.
- While incubating, press "OPTIC 1". If selected, enter PAT-ID with numeric keys or Up/Down keys. Confirm by pressing "OPTIC 1" again. The message "ACTIVE" is displayed and channel 1 is ready to start the reaction. Repeat for the remaining channels.
- 6. Add 50 µL prewarmed and stirred Thromboplastin reagent. The test will start automatically on addition

of the start reagent. If not simultaneously press the "OPTIC 1" key. The test will automatically start if using the Autopipette. (CAUTION: When the test procedure is running, pressing the "OPTIC 1" and the "Enter" keys will interrupt the test). Repeat for

- remaining channels.7. The instrument will read for 300 secs. If no clot is detected, the display will read "***".
- The result is displayed in seconds. Press the corresponding "Unit" key for conversion of results.

ASSAY CALIBRATION

For calibration curves, a minimum of two values is required, with a maximum of 5. It is highly recommended that more than two calibration points be used.

- 1. Make dilutions of Calibrator (SARP Cat No: 5185) in 0.9% NaCl (saline). Refer to the table below for preparation of standards
- 2. Determine PT time with undiluted calibrator in duplicate.
- 3. Determine PT with diluted plasmas in duplicate.
- If no clot time is detected for the diluted plasma samples (<25%), change the sensitivity in "Setup Test" to "High" and repeat.
- Enter calibration data, % activity and seconds. Use the % activity as given on the accompanying SARP data sheet.
- Check calibration curve with QC material (Norm-trol 1; 5186, Ab-Trol 2;5187, Ab-Trol 3; 5183).

% Activity	Dilution	Preparation
100	none	
50	1:2	200 uL plasma + 200 uL saline
25	1:4	100 uL plasma + 300 uL saline
12.5	1:8	50 uL plasma + 350 uL saline

9.3. Derived Fibrinogen

REAGENT PREPARATION

Prepare Thromboplastin reagents according to the package insert.

SYSTEM PREPARATION

- 1. Turn on instrument and wait for green LED light to come on.
- 2. Turn on printer if connected.
- 3. Connect optional Autopipette to system.
- 4. Check system setup if necessary.
- 5. Check test setup if necessary. Select method clotting+fibrinogen, enter new calibration curve data.
- Return to main menu and enter "Analysis" by pressing #1. Select PT with the Up/Down arrow keys or enter the numeric test code, #1. If any warning or error message appears, refer to section 7.0.

TEST PROCEDURE

Clotting method with fibrinogen:

- 1. Pipette *25 µL plasma* to cuvette.
- 2. Prewarm plasma for 60 secs, or the time indicated in the application guide. Press the "TIMER 1" key to start stop-watch 1.
- Place Thromboplastin and calcium (1:1) reagent with stir bar in large central reagent position.
- 4. Transfer cuvette to measuring position.
- While incubating, press "OPTIC 1". If selected, enter PAT-ID with numeric keys or Up/Down keys. Confirm by pressing "OPTIC 1" again. The message "ACTIVE" is displayed and channel 1 is ready to start the

reaction. Repeat for the remaining channels.

- 6. Add 50 µL prewarmed and stirred Thromboplastin reagent. The test will start automatically on addition of the start reagent. If not simultaneously press the "OPTIC 1" key. The test will automatically start if using the Autopipette. (CAUTION: When the test procedure is running, pressing the "OPTIC 1" and the "Enter" keys will interrupt the test). Repeat for remaining channels.
- 7. The instrument will read for 300 secs. If no clot is detected, the display will read "***".
- The result is displayed in seconds. Press the corresponding "Unit" key for conversion of results.

ASSAY CALIBRATION

For the derived fibrinogen test a calibration curve must be entered. It is highly recommended that more than two calibration points be used.

- 1. Test fibrinogen reference plasmas in duplicate. e.g SARP Calibrator; 5185 For example, test fibrinogen reference plasmas with low (~100 mg/dL), normal (~250 mg/dL) and high (>350 mg/dL) fibrinogen concentration. Record the Extinction (OD) values for all samples.
- 2 Enter the fibrinogen data for the calibration curve, Extinction & fibrinogen values.
- 3. Check the calibration curve with controls.
- <u>Note</u> If % PT *and* derived fibrinogen values are required, two calibration curves must be entered.

9.4. Clauss Fibrinogen Assay

REAGENT PREPARATION

Reconstitute Thrombin reagent 100 NIH U/mL according to the package insert.

SYSTEM PREPARATION

- 1. Turn on instrument and wait for green LED light to come on.
- 2. Turn on printer if connected.
- 3. Connect optional Autopipette to system.
- 4. Check system setup if necessary.
- 5. Check test setup if necessary and enter new calibration curve data.
- Return to main menu and enter "Analysis" by pressing #1. Select Fib with the Up/Down arrow keys or enter the numeric test code, #6. If any warning or error message appears, refer to section 7.0.

TEST PROCEDURE

All quality control and patient samples are diluted 1:10 in Owren's Veronal (OVB) for testing. If the clotting times fall outside of the linear curve, prepare and test 1:5 or 1:20 dilutions as needed.

- 1. Pipette *50 µL of diluted sample* to cuvette.
- Prewarm sample for 2 min, or the time indicated in the application guide. Press the "TIMER 1" key to start stopwatch 1.
- 3. Transfer cuvette to measuring position.
- While incubating, press "OPTIC 1". If selected, enter PAT-ID with numeric keys or Up/Down keys. Confirm by pressing "OPTIC 1" again. The message "ACTIVE" is displayed and channel 1 is ready to start the reaction. Repeat for the remaining channels.
- 5. Add 25 μL 100 NIH U/mL Thrombin reagent. The test will start automatically on addition of the start reagent. If not simultaneously press the "OPTIC 1" key. The test will automatically start if using the Autopipette. (CAUTION: When the test procedure is running, pressing the "OPTIC 1" and the "Enter" keys will interrupt the test).

6. The instrument will read for 300 secs. If no clot is detected, the display will read "+++" and "No Clot Detected" will print.

7. The result is displayed in seconds, and both this result and the fibrinogen concentration are automatically printed. press the corresponding "Unit" key for fibrinogen concentration if a printer is not attached.

 For samples diluted 1:10, this is the final result. For other dilutions, the result must be corrected. For example, if the sample was diluted 1:5, divide the result by 2; if the sample was diluted 1:20 or 1:40, multiply the result by 2 or 4, respectively.

ASSAY CALIBRATION

 Prepare standards using the Fibrinogen Calibrator provided with the Fibrinogen Assay Kit (Cat No: 5556)
 A suggested standard curve is shown in the following chart:

Dilution	Preparation
1:5	200 μL plasma + 800 μL OVB
1:10	250 μL plasma + 250 μL OVB
1:20	250 μL plasma + 250 μL OVB
1:40	250 μL plasma + 250 μL OVB

- 2. Mix the standards and assay each in quadruplicate.
- 3. Enter the calibration data in the "Setup Test" submenu. For example: the assigned fibrinogen value for the plasma used to prepare the standard curve is 250 mg/dL. The 1:10 dilution corresponds to 100% activity, therefore it is equal to 250 mg/dL. The 1:5 dilution is twice as concentrated, it is equal to 500 mg/dL. (The 1:20 dilution = 125 mg/dL and the 1:40 = 62.5 mg/dL.)
- 4. Verify the calibration curve with QC material (Norm-trol 1; 5186, Ab-Trol 2;5187, Ab-Trol 3; 5183)

9.5. Thrombin Time Assay

REAGENT PREPARATION

Reconstitute Thrombin Reagent 3NIH/vial according to the package insert.

SYSTEM PREPARATION

- 1. Turn on instrument and wait for green LED light to come on.
- 2. Turn on printer if connected.
- 3. Connect optional Autopipette to system.
- 4. Check system setup if necessary
- 5. Check test setup if necessary.
- Return to main menu and enter "Analysis" by pressing #1. Select TT with the Up/Down arrow keys or enter the numeric test code, #1. If any warning or error message appears, refer to section 7.0.

TEST PROCEDURE

Clotting Method:

- 1. Pipette *50 µL of undiluted plasma* to cuvette.
- 2. Prewarm sample for 3 min, or the time indicated in reagent package insert. Press the "TIMER 1" key to start stop-watch 1.
- 3. Transfer cuvette to measuring position.
- 4. While incubating, press "OPTIC 1". If selected, enter PAT-ID with numeric keys or Up/Down keys. Confirm by pressing "OPTIC 1" again. The message "ACTIVE" is displayed and channel 1 is ready to start the reaction. Repeat for the remaining channels.
- 5. Add 25 µL Thrombin Time Reagent. The test will start automatically on addition of the start reagent. If not simultaneously press the "OPTIC 1" key. The test will automatically start if using the Autopipette. (CAUTION: When the test procedure is running, pressing the "OPTIC 1" and the "Enter" keys will interrupt the test).

- The instrument will read for 300 secs. If no clot is detected, the display will read "+++" and "No Clot Detected" will print.
- 7. The result is displayed in seconds and is printed automatically printed.

9.6. APTT

REAGENT PREPARATION

Refer to package insert for APTT and \mbox{CaCl}_2 reagents.

SYSTEM PREPARATION

- 1. Turn on instrument and wait for green LED light to come on.
- 2. Turn on printer if connected.
- 3. Connect optional Autopipette to system.
- 4. Check system setup if necessary
- 5. Check test setup if necessary. Select method APTT
- Return to main menu and enter "Analysis" by pressing #1. Select APTT with the Up/Down arrow keys or enter the numeric test code, #1. If any warning or error message appears, refer to section 7.0.

TEST PROCEDURE

Clotting Method:

- 1. Pipette 25 µL plasma to cuvette.
- 2. Place $CaCl_2$ in large central reagent position.
- Add 25 μL of the APTT reagent. Incubate for 3 or 5 minutes (refer to package insert). Press the "TIMER 1" key to start stop-watch 1.
- 4. Transfer cuvette to measuring position.
- While incubating, press "OPTIC 1". If selected, enter PAT-ID with numeric keys or Up/Down keys. Confirm by pressing "OPTIC 1" again. The message "ACTIVE" is displayed and channel 1 is ready to start the reaction. Repeat for the remaining channels.
- Add 25 μL prewarmed CaCl₂ reagent. The test will start automatically on addition of the start reagent. If not simultaneously press the "OPTIC 1" key. The test will automatically start if using the Autopipette. (CAUTION: When the test procedure is running, pressing the "OPTIC 1" and the "Enter" keys will interrupt the test).

- 8. The instrument will read for 300 secs. If no clot is detected, the display will read "***".
- The result is displayed in seconds. To obtain results in R, press the "Unit 1" key.

9.7. PT-Based Factor Assays (II, V, VII & X)

REAGENT PREPARATION

Reconstitute Factor Deficient Plasma and prepare Thromboplastin reagent according to package insert.

SYSTEM PREPARATION

- 1. Turn on instrument and wait for green LED light to come on.
- 2. Turn on printer if connected.
- 3. Connect optional Autopipette to system.
- 4. Check system setup if necessary
- 5. Check test setup if necessary. Select method, enter new calibration curve data.
- Return to main menu and enter "Analysis" by pressing #1. Select appropriate factor assay with the Up/Down arrow keys or enter the numeric test code.. If any warning or error message appears, refer to section 7.0.

TEST PROCEDURE

All quality control and patient samples are diluted 1:10 in Owren's Veronal Buffer (OVB) for testing. If the clotting times fall outside of the linear curve, prepare and test 1:5 or 1:20 dilutions as needed. It is recommended to test 2 dilutions (1:10 & 1:20) for each sample. Refer to the reagent package insert for more information.

Clotting Method

- 1. Place Thromboplastin + calcium (1:1) reagent with stir bar in large central reagent position.
- 2. Pipette 25 μ L of diluted plasma and 25 μ l of deficient plasma to each cuvette. Refer to chart for sample preparation.
- 3. Incubate for 1 min, or the time indicated in reagent package insert. Press the "TIMER 1" key to start stop-watch 1.
- 4. Transfer cuvette to measuring position.
- While incubating, press "OPTIC 1". If selected, enter PAT-ID with numeric keys or Up/Down keys. Confirm by pressing "OPTIC 1" again. The message "ACTIVE" is displayed and channel 1 is ready to start the reaction. Repeat for the remaining channels.
- 6. Add 50 µL prewarmed and stirred Thromboplastin reagent. The test will start automatically on addition of the start reagent. If not simultaneously

press the "OPTIC 1" key. The test will automatically start if using the Autopipette. (CAUTION: When the test procedure is running, pressing the "OPTIC 1" and the "Enter" keys will interrupt the test). Repeat for remaining channels.

- The instrument will read for 300 secs. If no clot is detected, the display will read "+++" and "No Clot Detected" will print.
- 8. The result is displayed in seconds. Press the corresponding "Unit" key for conversion of results if a printer is not attached.
- 9. For patient and control samples diluted 1:10, this is the final result. If other dilutions are tested, the calculated value should be multiplied by the appropriate dilution correction factor. (i.e., samples diluted 1:20, multiply result by 2; for 1:40 dilutions, multiply by 4, etc.)

ASSAY CALIBRATION

For calibration curves, a minimum of two values is required, with a maximum of 5. It is highly recommended that more than two calibration points be used.

- 1. Make dilutions of Calibrator (SARP Cat No: 5185) in OVB A *suggested* standard curve is shown below.
- 2. Assay standards in quadruplicate as described.
- Enter calibration data (% activity and seconds) in "Setup Test". Check calibration curve with QC controls SAC-1; 5301 and SAC-2; 5302.

Sample	Dilution	Preparation
100% Standard	1:10	100 uL reference plasma + 900 uL OVB
50% Standard	1:20	50 uL of reference plasma + 950 uL OVB
25% Standard	1:40	25 uL of reference plasma + 975 uL OVB
12.5% Standard	1:80	500 uL of 25% standard + 500 uL OVB
Patient or Control	1:10	100 uL sample + 900 uL OVB

9.8. APTT-Based Factor Assays (VIII, IX, XI & XII)

REAGENT PREPARATION

Reconstitute Factor Deficient Plasma and prepare APTT reagents according to package insert.

SYSTEM PREPARATION

- 1. Turn on instrument and wait for green LED light to come on.
- 2. Turn on printer if connected.
- 3. Connect optional Autopipette to system.
- 4. Check system setup if necessary
- 5. Check test setup if necessary. Select method, enter new calibration curve data.
- Return to main menu and enter "Analysis" by pressing #1. Select appropriate factor assay with the Up/Down arrow keys or enter the numeric test code. If any warning or error message appears, refer to section 7.0.

TEST PROCEDURE

All quality control and patient samples are diluted 1:10 in Owren's Veronal Buffer (OVB) for testing. If the clotting times fall outside of the linear curve, prepare and test 1:5 or 1:20 dilutions as needed. It is recommended to test 2 dilutions (1:10 & 1:20) for each sample. Refer to the reagent package insert for more information.

Clotting Method

- 1. Place CaCl₂ in large central reagent position.
- Pipette 25 µL of diluted plasma and 25 µL of deficient plasma into each cuvette. Refer to chart for sample preparation.
- 3. Incubate for 2 min, or the time indicated in reagent package insert.
- Add 25 μL of APTT reagent. Incubate for 3 or 5 minutes. Refer to package insert for appropriate activation/incubation times. Press the "TIMER 1" key to start stopwatch 1.
- 5. Transfer cuvette to measuring position.
- While incubating, press "OPTIC 1". If selected, enter PAT-ID with numeric keys or Up/Down keys. Confirm by pressing "OPTIC 1" again. The message "ACTIVE" is displayed and channel 1 is

ready to start the reaction. Repeat for the remaining channels.

- Add 25 μL prewarmed CaCl₂ The test will start automatically on addition of the start reagent. If not simultaneously press the "OPTIC 1" key. The test will automatically start if using the Autopipette. (CAUTION: When the test procedure is running, pressing the "OPTIC 1" and the "Enter" keys will interrupt the test). Repeat for remaining channels.
- The instrument will read for 300 secs. If no clot is detected, the display will read "+++" and "No Clot Detected" will print.
- 9. The result is displayed in seconds. Press the corresponding "Unit" key for conversion of results if a printer is not attached.
- 10.For patient and control samples diluted 1:10, this is the final result. If other dilutions are tested, the calculated value should be multiplied by the appropriate dilution correction factor. (i.e., samples diluted 1:20, multiply result by 2; for 1:40 dilutions, multiply by 4, etc.)

ASSAY CALIBRATION

For calibration curves, a minimum of two values is required, with a maximum of 5. It is highly recommended that more than two calibration points be used.

- 1. Make dilutions of Calibrator (SARP Cat No: 5185) in OVB A *suggested* standard curve is shown below.
- 2. Assay standards in quadruplicate as described.
- Enter calibration data (% activity and seconds) in "Setup Test". Check calibration curve with QC controls SAC-1; 5301 and SAC-2; 5302.

Sample	Dilution	Preparation
100%	1:10	100 uL reference
Standard		plasma + 900 uL
		OVB
50%	1:20	50 uL of reference
Standard		plasma + 950 uLOVB
25%	1:40	25 uL of reference
Standard		plasma + 975 uL
		OVB
12.5%	1:80	500 uL of 25%
Standard		standard + 500 uL
		OVB
Patient	1:10	100 uL sample + 900
or		uL OVB
Control		

10.0 SPECIAL FUNCTIONS

10.1. Software Upgrading

The *Helena C-2* supports a very easy procedure to upgrade any latest software developments. For more information about latest software revision, ask your local distributor.

Requirements :

- Windows PC,
- Download cable,
- Update files flash.bat, download.exe, flashdl.exe, flashv25.exe and the analyser firmware xxxxx.img (i.e. cm2114c.img → Helena C-2 1.14c)
- 1. Save any important test setups of the instrument by printing to paper
- 2. Reboot your PC. This will reset your Comm ports !
- 3. Extract Flash Disk to any local folder on your PC.
- 4. Connect Helena C-2 to PC with 0 Modem cable (PIN 2-3-5 to PIN 3-2-5)
- 5. Double click to "upgrade.bat" and follow dialogue.
- 6. After a few minutes the Helena C-2 will reboot.
- 7. Re-Initialisize the memory
 - a. Power off/on instrument
 - b. Press key "Optic 1" +"." +"ENTER" simultaneously -> message "INIT SYSTEM..." should appear and afterwards instrument should reboot automatically
- 8. Restore test setup parameters manually.

Problems during updates:

-Update stays at the following screen:

C:\WINNT\system32\cmd.exe	- U ×
D:\TECO\BAUMI\CA4\PROGRAMM>Download -c1 -iflashCA4-y-q TECO-DOWNLOAD TestVersion 2.00 Sep 14 1998 (C) DOLI Elektronik GmbH,(1995-1998)	
MinimalDownload Start-Segment (Hex) : 100 Serieller Download (115200 Baud)	
Serieller Download (DE-Adr=0000009)	
D:\TECO\BAUMI\CA4\PROGRAMM>dlCA4 -c1 -iCA4.bin -eC000 -q \$r \$x \$v	
DOLI FLASH-Programmierung FLASHDL Version 2.03 Jun 2 1999 (C) DOLI Elektronik GmbH,(1995-1999)	
Infile CA4.bin Backupfile flash.sav Kommunikation COM1, 115200 Baud Nur EraseBlock sichern?!? NoSaue?!?	
NoUerify!!! tarte Sync. zum SUB.	

- \rightarrow Reboot PC and try again.
- → If transfer still failes, boot PC with MS DOS floppy disk and perform MS DOS update.

- Nothing happened after click to 'upgrade.bat'

→ perform update with MS DOS commands

- MS DOS update (for Windows 2000 / XP)
 - Open data explorer and extract all files to drive "C", folder Helena Biosciences.
 - Go to MS Windows "START/RUN" and enter "cmd" -> DOS command window will open.
 - Change to directory with command "cd c:\Helena"
 - Enter command "dir" -> all files including upgrade.bat should be listed
 - Enter command "upgrade.bat" -> a dialog should open.
 - Follow dialog. Update will start and when finished the instrument will reboot.

11.0 TECAM SMART the LIMS solution

11.1. General

TECAM SMART is a user friendly software with LIMS functionality (Laboratory Information Management. It allows to sample all instrument results and manage it in a database application.

Requirements:

- Pentium III, 128MB Ram
- Microsoft Windows 2000 ,XP or Vista

DataBase:

- Microsoft Access Jet Engine 4.0
- Max. 4GB (400.000 results)

Key features:

- Account Management: operator can log in as Administrator or user in order to control and manage the database with different access rights
- DataBase Management: operator can create, backup, import or export database
- Reaction Curve: can be displayed in fix or autoscale mode
- Patient DataBase: PID can be linked to patient names
- Filter functions: Every record field can be filtered (e.g. last 30 days all PT)
- Report Generator:
 Day report, patient report, or last x days report can created
- just by filter the fields
- Statistical analysis: includes mean, SD,CV for filtered data
 - Online Update: software be updated by internet
- Multi lingual: English, Spanish, Italian, Portuguese, Russian, Greek, Chinese

11.2. Interface Protocol

ASCII command characters:

STX	start of transmission	asc(2)
ETX	end of transmission	asc(3)
TAB	vertical tabulator	asc(9)
LF	line feed	asc(10)
CR	carriage return	asc(13)
DLE	idle	asc(16)

Overview of records and principle:

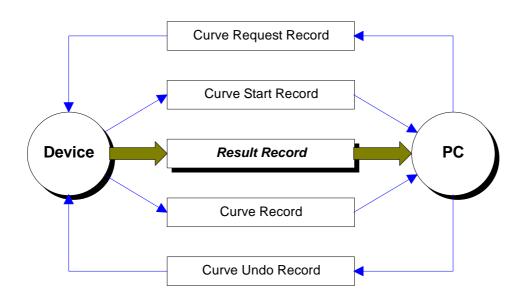


Figure 13 – LIMS communication

The result record is always transmitted.

The curve record transmission must be activated from PC with a request record.

The curve request record:

Function:	enables curve transmission
Definition:	<dle &"4"="" cr=""></dle>

The curve undo record:

Function:	disables curve transmission
Definition:	<dle &"3"="" cr=""></dle>

The curve start record

Function:	Indicates that a new measurement had been started. The transmission needs to be enabled by the "Curve Request Record".	
Definition:	<stx &"p"=""><optic></optic></stx>	<lf &="" etx=""></lf>
Fields:	Delimiter: <stx "p"="" &=""> <optic> <lf &="" etx=""></lf></optic></stx>	asc(9) = tabulator Record header ; STX=asc(2) optic channel 1-4 (channel 1 = 0) Record end; LF=asc(10), ETX=asc(3)

The curve record

Function:	Sends actual optical density every second The transmission needs to be enabled by the "Curve Request Record".	
Definition:	<stx &"o"=""><optic< td=""><td>><mod><lf &="" etx=""></lf></mod></td></optic<></stx>	> <mod><lf &="" etx=""></lf></mod>
Fields:	Delimiter: <stx "o"="" &=""> <optic> <mod> <lf &="" etx=""></lf></mod></optic></stx>	asc(9) = tabulator Record header ; STX=asc(2) optic cannel 1-4 (channel 1 = 0) milli optical density Record end; LF=asc(10), ETX=asc(3)

Example: Signal = 0,999 E in channel 1--> <STX "O"><0><999><LF & ETX>

The result record

Function:	send after every result					
Definition:	<stx &"r"=""><optic><sid><error><datel><flags><pid><test> <sec><mod><%><r><inr> <unit><scale><lf &="" etx=""></lf></scale></unit></inr></r></mod></sec></test></pid></flags></datel></error></sid></optic></stx>					
Fields:	Delimiter: <stx "r"="" &=""> <optic> <sid> <error> <date> <flags> <pid> <test> <sec> <mod> <%> <r> <inr> <unit> <scale> <lf &="" etx=""></lf></scale></unit></inr></r></mod></sec></test></pid></flags></date></error></sid></optic></stx>	<pre>asc(9) = tabulator Record header ; STX=asc(2) optic cannel 1-4 (channel 1 = 0) system identifier System error, hexadecimal ddmmyy or 000000 if not used Result flags : +, -, *, > Result or patient ID number name of test ("PT", "APTT",) 12.5 000 100.0 1.00 1.00 1.00 300. mg/dL, ng/mL, Record end; LF=asc(10), ETX=asc(3)</pre>				

Examples:

Test PT with 12.5s 1.02INR 98.5% PID=1000 ERR=0 Kanal=1 <STX R><0><1011000><0><311204><0><1000><PT> <12.5><0><98.5><1.02><0><>LF ETX>

Test FIB with 10.0s 200 mg/dL PID=1000 ERR=0 Kanal=1 <STX R><0><1011000><0><311204><0><1000><FIB> <10.0><0><0><0><200><mg/dL><LF TX>

Test AT3with 0.651E 78% PID=1000 ERR=0 Kanal=1 (chromogen) <STX R><0><1011000><0><311204><0><1000><AT3> <0><651><78><0><0><<LF ETX>

11.3. Screenshots

PID.	Name	Test	Result	Time	Date	Flag	
20		PT	14,5s 0,87 INR	12:01:06	02.12.2008	A	180
228 227 19 20 17 16		PT	15,1s 0,91 INR	11:59:17	02.12.2008		
27		PT	15s 0,9 INR	11:59:15	02.12.2008	S	+ 160
19		FIB	37,9s 46,1mg/dl	11:50:46	02.12.2008	*A	s 140
20		FIB	21,3s 99,2mg/dl	11:50:44	02.12.2008	AS	I 120
17		FIB	11,3s 215,7mg/dl	11:48:36	02.12.2008		N 100
16		FIB	6,6s 390,3mg/dl	11:48:30	02.12.2008	AS	
15 14		FIB	28,3s 68mg/dl	11:44:02	02.12.2008	*A	
14		FIB	30s 62,9mg/dl	11:44:01	02.12.2008	*A S	
13		FIB	36,6s 48,3mg/dl	11:39:24	02.12.2008	*A	P 40
13 13 12		FIB	27,3s 71,3mg/dl	11:39:22	02.12.2008	*A	20
DD1600	DD High Control	FIB DD	16,6s 138,3mg/dl 164m0 912ng/mL	11:37:47 16:58:25	02.12.2008 23.10.2008	Α	0
01000	borngri control	00	to into stang/me	10100120	2011012000		ਂ ਤੋਂ ਵੱਡੂ ਵੱਡੂ ਸੱਤੂ ਕੇ ਤੁੱਕ
							Name: Brth: Sav: Bed: - Test: PT Result: 14,5s A [70-12096] Date: 02.12.2008 Time: 12.01:06 Anaylser: 1010 Lab.:
Connect Data	Save Calif.		Ea	TEC02008.mdb			

Figure 14 – Tecam Smart Results

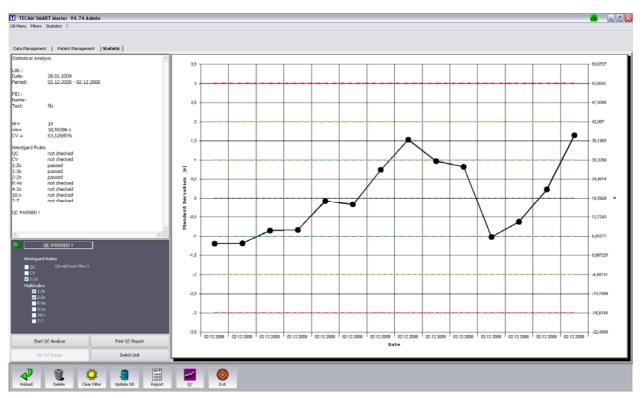


Figure 15 – Tecam Smart statistics

loa																	
D		Database															
	ahe	Time	PatientD	Name	Birthday	Sex	Testname	Result1	Scale1	Result2	Scale2	Result3	Flag	Warning	SystemID	Comment	
						_				_							
	22.07.2004	13.02.38	M07639	TEControl N	20.03.2007		APTT	32.8		32.8	3				10121		
	22.07.2004	12:50:59	M07639	TEControl N	20.03.2007	_	AT	,145	E	105,4	24		_		10121		
	22.07.2004	125859	M07639	TEControl N	20.03.2007	-	FIB	12.3	*	366.0	mg/dL	1.0100			10121		
	22.07.2004		M07639	TEControl N	20.03.2007		PT	11,6	8	83.0	2	1,01INR			10121		test probe
	22.07.2004	14:47:25	00752004	Xanthou		-	APTT	22,3		22.3	1			A	10121		
	22.07.2004	14:43:55	00752004	Xanthou		-	AT	.156	E	104.0	- 14				10121		
	22.07.2004	14:43:55 14:43:54	00752004	Xanthou Xanthou	_	-	FIB PT	11,0	8	340,0	mg/dL	1.02INB	_	ATX*	10121		
							APTT					1,02NH		AIX*			
	22.07.2004	14:41:18 14:37:55	00742004	Moultzou		-	APTT	34.7	8	34.7	*	-			10121		
	22.07.2004	14:37:55	00742004 00742004	Moultzou	_	-	FIB	.099	E	111,1				A	10121		
	22.07.2004	14:37:55	00742004	Moutzou Moutzou		-	PT	6,1	8	695.0	mg/d,		<u> </u>	A	10121		
	22.07.2004	14:37:54	00732004	Triadafiou		-	APTT	25.8	8	25.8			-	A	10121		
	22.07.2004	14:32:16	00732004	Triadafiou		-	APTI	25.8	1	115.5	2			A	10121		
	22.07.2004	14:32:00	00732004	Triadafiou		-	FIB	5.7	1	746.0	ng/dL			A	10121		
	22.07.2004	14.31.59	00732004	Triadaliou		-	PID	13.5		50.0	100 mg/oL			A	10121		
	22.07.2004	14:29:16	00602004	Akratou		-	APTT	27.7		27.7			-	A	10121		
	22.07.2004	14.26.09	00602004	Akratou		-	AT	,118	ε	108.8	*			n .	10121		
	22.07.2004	14.20.00	00602004	Akatou		-	FID	5.3		015.0	mp/d.			A.	10121		
	22.07.2004	14:26:08	00602004	Akratou		-	PT	12.3	1	75.8		1.31 INR	-		10121		
	22.07.2004	14.23.27	00702004	Terzides		-	APTT	31.3		31.3	1		-		10121	-	
	22.07.2004	14:20:46	00702004	Terzides		-	AT	.324	Ē	02.9			-		10121		
1	22.07.2004	14,20.46	00702004	Terzides		-	FIB	7.7	1	524.0	mg/d,	-	-	A	10121		
t	22.07.2004	14:20:46	00702004	Terzides		-	PT	13.4		51.0	×		-	A	10121		
1	22.07.2004	16:50:57	00702004	Torzides	-	-	F10	22.1		86.8		-	-		10121	-	
t	22.07.2004	16:50:57	00602004	Akratou		-	F10	22,3	+	85.0	*		-		10121		
t	22.07.2004	17:03:01	00752004	Xanthou		-	F10	21.1	8	96.7	- 24		_		10121		
t	22:07.2004	16.55.49	00742004	Moutzou			F10	20,9		98,9	- 14		-		10121		
t	22.07.2004	16:55:49	00732004	Triadafilou		-	F10	21,3		94.6	2		-		10121		
t						-	-		1		-		-				

Figure 16 – Tecam Smart DataBase followed by a report

Patient	0				
	PT	16.08.2004	11:45:01	15,9s	97,7%
	PT	16.08.2004	11:45.01	14,9s	*105,7%
	FIB	16.08.2004	12:00:26	12,8s	288mg/dL
	FIB	16.08.2004	12:00:26	14s	265mg/dL
	APTT	16.08.2004	11:53:36	27,2s	1,07RATIO
	APTT	16.08.2004	11:53:36	27s	1,06RATIO
Patient	1	м	arco		01.01.2000
	PT	16.08.2004	11:45:01	27,1s	44,8%
	PT	16.08.2004	11:45.01	27s	45%
	PC	17.06.2004	14:34:30	88s	*115,9%
	PC	17.06.2004	15:24:00	82,3s	*118,5%
	PC	17.06.2004	14:34:30	89,8s	*127%
	PC	17.06.2004	15:24:00	80,5s	109%
	FIB	16.08.2004	12:00:27	24,7s	134mg/dL
	FIB	16.08.2004	12:00:27	25s	133mg/dL
	APTT	16.08.2004	11:53:36	51s	2,01RATIO
	APTT	16.08.2004	11:53:36	53,1s	2,09RATIO
Patient	12345678	м	r. Smith		31.12.2001
	FIB	11.08.2002	15:45:30	2,9s	>1423mg/d
	FIB	11.08.2002	15:45:30	2,9s	>1423mg/d
	FIB	11.08.2002	15:45:30	2,9s	>1423mg/d
	FIB	11.08.2002	15:45:30	2,9s	>1423mg/d

12.0 PRODUCT CATALOGUE

Helena C-2 (with Standard Package)

Cat. Number: C-2

including:

- 1 pc Universal Power supply (93-240Vac/50-60Hz) with EU adapter
- 1 pc Dust Cover
- 25 pcs Double cuvettes (2 wells/each)
- 5 pcs Reagent container (Ø22.5mm)
- 1 pc Stirring magnets
- 1 pc Reagent adaptor (Ø22.5mm)
- 1 pc Printer cable
- 1 pc Pipette fastener (with 2 screws)
- 1 pc Warranty card
- 1 pc CD: Manual, Service, Application Guides

Consumables and Accessories

Cat.No.	Description	Content	Qty
C-241	Double-cuvette (2 pos/ea)	250	1 Pack
C-010	4-stage-Autopipette 25/50/100/200 µl	1	1 Pc
AC-4601	Reagent adaptor \emptyset =22.5mm	1	1 Pc
AC-4602	Reagent adaptor \emptyset =22.8mm	1	1 Pc
AC-4603	Reagent adaptor \emptyset =24.2mm	1	1 Pc
C-06	Reagent adaptor \emptyset =18.6mm	1	1 Pc
C-07	Reagent adaptor \emptyset =27.8mm	1	1 Pc
C-08	Reagent adaptor \emptyset =25.2mm	1	1 Pc
C-09	CCD Barcode Reader	1	1 Pc
AC-4302	Stirring magnets	4	1 Pack
C-244	Unversal Power Supply	1	1 Pc
AC-4300	Reagent container $arnothing$ 22.5mm	100	1 Pack
AC-4305	Reagent tubes $arnothing$ 16mm	100	1 Pack
C-04 C-03 C-01 C-02	Thermal paper for printer Printer cable for printer Thermal printer TECAM Smart Software Patient management, Monitoring Research CD and RS232 cable	5 1 1 1	1 Pack 1 Pc 1 Pc 1 Set

Tel+44 (0)191 482 8440Fax+44 (0)191 482 8442

marketing@helena-biosciences.com techsupport-hs@helena-biosciences.com Queensway South, Team Valley Trading Estate, Gateshead, Tyne and Wear, NE11 0SD, United Kingdom

HL-2-1820P 2009/03(2) [English]

www.helena-biosciences.com